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Summary. The need for reliable maps of subterranean spaces too hazardous for
humans to occupy has motivated the development of robotic mapping tools. For
such systems to be fully autonomous, they must be able to deal with all varieties of
subterranean environments, including those containing loops. This paper presents an
approach for an autonomous mobile robot to determine if the area currently being
explored has been previously visited. Combined with other techniques in topological
mapping, this approach will allow for the fully autonomous general exploration of
subterranean spaces. Data collected from a research coal mine is used to experimen-
tally verify our approach.

1 Introduction

In many parts of the world, abandoned mines present a significant environ-
mental hazard. Toxic runoff, landslides, and subsidence are just some of the
dangers presented by these structures. In the U.S. alone, there are tens of
thousands of abandoned mines [3] that threaten nearby surface and subter-
ranean operations. The first step towards combating this problem is to obtain
an accurate metric survey of the mine structure. Unfortunately, in most cases
an accurate survey of the mine has either been lost or never existed. Taking
a new survey of the structure is often limited to inspections via boreholes,
as abandoned mines are usually too dangerous for people to enter. For this
reason, robots have been proposed as a method for mapping abandoned mines.

The Carnegie Mellon Subterranean Robotics group has undertaken the
task of developing robotic systems that can autonomously explore abandoned
mines or other hazardous subterranean voids. The initial effort led to the
development of a system that can autonomously navigate and explore long
stretches of a single mine portal [2]. More recent work has focussed on ex-
panding mission profiles to include general exploration of multiple intersect-
ing corridors. This led to a system which can detect and traverse multiple
corridors [13], but can not determine when it has returned to a previously
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Fig. 1. Left: Groundhog, the current robotic platform of the mine mapping project.
Right:This map was generated from data acquired during experimentation and
utilizes offline globally consistent mapping techniques. It shows the highly cyclic
nature of room-and-pillar mines.

visited corridor intersection from a different direction. This constraint limited
the environments explored in [13] to those which did not contain loops.

This paper presents a method by which an autonomous mobile robot can
identify correspondences between intersections in subterranean environments,
allowing for autonomous loop closure and more general exploration. Our ap-
proach for matching intersections is based on comparisons of both 2D and
3D range data local to each intersection. The results of these comparisons
are then fed to a binary classifier, which produces the probability of a match.
Such a classifier can then be integrated into a complete system designed to
track multiple topological map hypotheses.

The remainder of this paper discusses the relevant details of our approach.
Section 2 provides background into subterranean topological exploration. Sec-
tion 3 describes our technique, with experimental results presented in Section
4. We conclude with a discussion and directions for future work.

2 Subterranean Topological Exploration

2.1 Robotic Platform

Our current mine mapping platform is Groundhog (Figure 1), a 700 kg
custom-built ATV-type robot that is physically tailored for operation in the
harsh conditions of abandoned mines. Groundhog’s primary sensing consists
of 2 SICK LMS-200 laser range finders mounted in front and back. Each has
a 180◦ field of view, and is mounted on a tilt mechanism with a 60◦ range.
Tilting each laser allows for the acquisition of 3D range data. Groundhog
has been used extensively in both test and abandoned mine environments,
accruing hundreds of hours of mine navigation, including 8 successful portal
entry experiments in the abandoned Mathies mine outside of Pittsburgh, PA.
Offline techniques have been used to generate globally consistent, large-scale
maps based on log data from these experiments. For a thorough overview of
the Groundhog system, see [2].
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2.2 Topological Representations

Topological representations coincide nicely with the inherent structure of
room-and-pillar mines, which consist almost exclusively of narrow corridors
and corridor intersections (see Figure 1). A topological map is a graph repre-
sentation of an environment. The nodes of the graph correspond to distinct lo-
cations in the environment, and the edges correspond to direct paths between
two such locations. For mines, nodes and edges correspond to intersections
and corridors, respectively. This approach was used in [10] to allow a robot to
traverse known mine environments. Topological maps have also proven useful
in robotic exploration tasks of unknown environments [9]. Unexplored edges
in a topological map correspond to unexplored regions of the environment,
thus providing a mechanism for determining which region of the environment
to explore next.

The key components of a system designed for autonomous topological
exploration are:

• A method for traversing an edge in the environment until a node is reached.
• A method for detecting a node and its associated edges in the environment.
• A method for determining whether the currently sensed node has been

visited before, and if so which previously visited node it corresponds to
(this is the problem our current work strives to solve).

• A representation of the topological map and its associated uncertainty.

The first two components have been previously developed and tested in sub-
terranean environments, as described in the following sections.

2.3 Edge Traversal

Edge traversal is the first necessary component for autonomous topological
exploration. While traversing a single corridor, Groundhog utilizes the Sense-
Plan-Act (SPA) framework. While stationary, Groundhog tilts one of its lasers
to accumulate 3D range data from the space in front of it. This 3D point
cloud is used to generate a 2.5D cost map. Next, a goal pose is chosen that
will further Groundhog’s progress down the corridor (or turn it into a new
corridor). A path is planned to the goal pose by feeding the cost map into
a nonholonomic motion planner described in [13]. The planned path is then
traversed by Groundhog, and the whole process repeated. For a more detailed
description, see [2, 13].

2.4 Node Detection

A method for node detection is also critical to topological exploration.
Groundhog detects intersections in its environment by searching for nodes
of the generalized Voronoi diagram (GVD) [6]. Edges of the GVD represent
sets of points equidistant from 2 objects. Nodes of the GVD represent points
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Fig. 2. The data collected at each node. Left: Groundhog approaching an inter-
section. Center: the 2D range data collected, as well as the detected node location
and radius. Right: the 3D range data collected.

equidistant from 3 objects. While traversing an edge, potential GVD nodes
are detected using a procedure described in [15]. Each potential node is then
tracked until Groundhog drives through the intersection to which the node
corresponds. The purpose of this extra traverse is to obtain a 2D map of the
environment around the node with a full 360◦ coverage, as opposed to the 180◦

field of view of Groundhog’s lasers. Such coverage is achieved by combining
multiple laser scans from different vantage points. This 360◦ coverage is nec-
essary to determine whether the intersection just traversed is worth exploring;
if the end of a corridor is already within sensor range from the intersection
itself, it may not be worth further exploration. This procedure also eliminates
large concavities that can appear as intersections when first detected. After
a node has been detected and verified, a 3D scan of the intersection is taken,
and Groundhog continues its exploration. The Voronoi radius (equidistance
value between the node and the objects that formed it), 2D map, and 3D scan
(Figure 2) are all stored for later use.

2.5 Framework for Topological Uncertainty

For successful topological exploration, a robot must be able to determine if a
given node has been previously visited. This determination can be made based
purely on the local topology [7], or by combining topological information with
range data or data on nearby features. The techniques described in this paper
follow the latter approach.

Regardless of the specifics of the node matching approach, its output will
be uncertain. There may be multiple previous nodes which match the current
node closely enough to be considered a possible match, and the fact that the
node may never have been previously visited adds additional uncertainty. A
framework is necessary for dealing with this uncertainty until the ambiguity
can be removed. A widely adopted approach is to maintain multiple hypothe-
ses as to the correct topology of the environment [8, 11, 16]. The robot can
then either take actions designed to explicity remove the ambiguity, or main-
tain multiple hypotheses until the natural exploration behavior of the robot
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produces enough additional information. In either case, the correct framework
can add additional robustness on top of the chosen node matching scheme.

3 Subterranean Node Matching

We approach node matching as a topological global localization problem.
When a robot arrives at a node Ni along edge Ei, it can localize itself to
a discrete subset of all possible states in the world (the set of states located
at a node, oriented along an edge). If the robot can properly match Ni and
Ei to a previously visited Nj and Ej , then it will have relocalized itself. If the
robot can properly determine that Ni has not been visited before, it will still
have localized itself to the correct state, albeit a state that has not previously
been visited.

To determine whether the current node Ni matches a previous node Nj ,
we use a hybrid approach based on both local topology and range data (Figure
3). Local topological data is rarely descriptive enough to determine explicitly
whether two nodes match. However, it requires essentially no preprocessing:
it is computationally inexpensive to determine whether Ni and Nj are of the
same degree. For this reason, local topological data is used to pare down the
number of prospective matches.

For similar reasons, 2D as well as 3D range data is used. While 2D range
data is usually not descriptive enough to make an explicit determination, it
is much cheaper to process than the full 3D point cloud, and can further pare
down the number of prospective matches. 2D data has another advantage un-
der our current setup: as described in Section 2.4, 2D information is collected
a full 360◦ around the intersection. The additional coverage offered by 2D
data often proves quite useful in determining final matches.

A common approach for determining whether a robot is revisiting a lo-
cation is to explicitly search for features in the local environment, and try
to match these features to those that have been previously detected. How-
ever, subterranean spaces provide a unique challenge for feature extraction.
While such spaces are often feature rich, it is hard to characterize the features
exhibited. Features can very greatly in both type and scale, and so a more
robust approach is needed. For this reason, our approach compares nodes in a
manner which does not require explicit extraction of predetermined features.

3.1 Comparison of Topological Properties

The first step of our node matching scheme is to use the topological properties
of the detected node Ni to eliminate as many nonmatching nodes Nj as possi-
ble. These topological properties are the degree of the node and its associated
Voronoi radius. Another property we explored was the relative orientations
of the edges associated with the node. Previous work [12] has shown these
relative orientations to be quite susceptible to noise. This lack of robustness
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CompareNodes(Ni, Nj):
if Ni.degree 6= Nj .degree then return 0
d← Ni.degree
if |Ni.vRadius −Nj .vRadius | > T dr then return 0
P2 ← PositionOffsetBetweenNodes(Ni, Nj)
R2 ← MinimumErrorRotation(Ni, Nj , P2)

(MSE2D, P2, R2)← TrICP2D(Ni.2D,Nj .2D,P2, R2)

if MSE2D > T de then return 0
(MSE3D, P3, R3)←TrICP3D(Ni.3D,Nj .3D,P2, R2)

E ← FormErrorVector(Ni, Nj , P3, R3)

return LogisiticRegression(E, d)

Fig. 3: Pseudocode for our node matching procedure

was also observed in our own experiments, and therefore this property was
not used. Instead, if Nj has a different degree than Ni, or the difference in
observed radii is more than a threshold Tr, Nj is eliminated as a candidate
match. Tr is set relatively high, so as to ensure that no correct matches are
ever thrown out, while eliminating as many incorrect matches as possible in
a computationally inexpensive manner.

3.2 2D map matching

The next phase of node matching is to compare each node’s 2D local map.
Before the 2D maps can be compared, they must be properly aligned. Align-
ment of 2D point sets can be achieved using the Iterative Closest Point (ICP)
algorithm [4]. ICP assumes that each point in the data set corresponds to the
closest point in the model set. These correspondences are used to compute the
transformation between the two sets that minimizes the Mean Squared Error
(MSE). The correspondences are then recomputed, and the process iterates
until convergence.

Due to the manner in which our 2D maps are constructed, the assumption
that every point in the data set has a corresponding point in the model set is
often violated to a degree that degrades performance. Therefore, the Trimmed
Iterative Closest Point algorithm (TrICP) [5] is used instead. The key differ-
ence between ICP and TrICP is that TrICP assumes that only a proportion
ξ of the points in the data set correspond to points in the model set. At each
iteration, only ξK of the K points in the data set are used. The ξK points
used are those with the smallest squared distance to their corresponding point
in the model set. When unknown beforehand, ξ can be automatically set by
minimizing the function

ψ(ξ) = MSE(ξ)ξ−(1+λ) (1)
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whereMSE(ξ) is the MSE of the ξK points with the smallest squared distance
to their corresponding point in the model set. The parameter λ balances the
tradeoff between using more points and increasing MSE. In [5], λ = 2.

Both ICP and TrICP require a fairly accurate initial alignment in order to
converge correctly. By framing node matching as a global localization prob-
lem, it is assumed that there does not exist a good long term estimate of
metric position. In practice, this is usually the case, as Groundhog’s online
position estimation is not stable over long distances (accurate metric maps
are produced offline). Since Groundhog’s perceived metric position can not be
used for an initial alignment, the locations of the nodes themselves are used.
Since each node is embedded into the environment, if the two local maps are
really of the same intersection, then the location of the Voronoi node in each
map corresponds to the same point in space, represented in different coor-
dinate frames. Setting the origin of each local map to be the corresponding
Voronoi point thus produces an initial alignment in position. However, the
orientation of each map relative to the node is still unknown. To fix the orien-
tation, TrICP is run 8 times, with the initial orientation of one map relative
to the other equally spaced at 45◦ intervals. TrICP is able to overcome such
large errors in initial orientation because the error in initial position is small.
The final alignment that results in the smallest MSE is selected as the correct
2D alignment (Figure 4(a)).

The MSE of the final alignment (after recomputing ξ) is compared against
a threshold Te. Just as with Tr, Te is set to eliminate as many false matches
as possible, while not eliminating any correct matches.

3.3 3D map matching

The last phase of node matching uses the 3D range data gathered after each
node is detected. As with the 2D data, the 3D data must first be properly
aligned. The 3D alignment is also achieved using TrICP. The initial 3D align-
ment used for TrICP is based on the final 2D alignment. Using the 2D align-
ment between the candidate nodes, and the known position of each node
relative to the origin of the 3D scan, an initial 3D alignment is computed that
is fairly accurate in x, y and yaw. Just as running TrICP with only an initial x
and y allows the 2D alignment to converge to the correct orientation, running
TrICP with an initial x, y and yaw allows the 3D alignment to converge to
the correct z, roll, and pitch (Figure 4(b)).

In this phase, TrICP is run with one modification. Normally, ξ is computed
according to (1) once during the first iteration. Thus, ξ depends heavily on
the initial alignment. Since the initial alignment could have significant error
in 3 of the 6 degrees of freedom, ξ must be occasionally recomputed. For this
purpose, an additional loop is added around TrICP. After TrICP successfully
converges, ξ is recomputed based on the final alignment. The final alignment
is then fed back into TrICP as the new initial alignment. This process repeats
until the value of ξ converges.
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(a) 2D alignment: Each map is centered around its Voronoi node, and then one
map is rotated relative to the other to find the minimum MSE alignment.

(b) 3D alignment: the 2D alignment is used as the initial 3D alignment (left).
The ξNd closest points (center) are then used to find the final alignment
(right).

Fig. 4. 2D and 3D alignment of range data at an intersection

After each 3D alignment is complete, an error vector E = {e1, ..., en} is
produced for each prospective match Ni ↔ Nj . The error vector consists
of both 2D and 3D error measures. The 2D metrics are used despite the
availability of 3D metrics, due to the 360◦ coverage of 2D data. In addition to
MSE, additional error metrics based on the normal vectors of the 3D range
data are used. This error metric is especially useful for classifying potential
matches with a small ξ. The specific error vector used is described in Section
4.

3.4 Classification

After an error vector has been produced, the final task is to determine as
accurately as possible whether or not Ni matches Nj . This can be viewed as a
binary classification problem, with matching and non-matching classes. One
approach to binary classification is logistic regression [1]. Under this approach,
the probability of a match is computed from the error vector E as
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Table 1. The results of each phase of node matching

Stage of # of Incorrect # of Correct
Comparison Matches Remaining Matches Remaining

Original Dataset 1962 108
Degree Matching 1002 108
Radii Difference 588 108

2D MSE 173 108
Logistic Regression 23 108

P (Ni ↔ Nj |E = {e1, ..., en}) =
1

1 + exp(−z)
(2)

z = w0 + w1Φ1(e1) + w2Φ2(e2) + ...+ wnΦn(en) (3)

W is vector of weights {w0, ..., wn}, computed from training data using a
maximum likelihood formulation. Each Φi is constructed as a classifier based
on an individual element of the error vector. Our approach constructs each
Φi as a Gaussian classifier of the ith element of the error vector

Φi(ei) =
N (ei, µ+

i , σ
+
i )

N (ei, µ+
i , σ

+
i ) +N (ei, µ−i , σ

−
i )

(4)

where µ+
i and σ+

i are the mean and standard deviation of the ith element
of E over matches, µ−i and σ−i are the mean and standard deviation over
non-matches, and N (e, µ, σ) is the Gaussian probability density function.

4 Experimental Results

4.1 Data Collection

To test our node matching approach, data was collected from the Bruceton
research coal mine near Pittsburgh, PA. The dataset consists of the same
topological, 2D, and 3D data that would be collected during autonomous ex-
ploration and intersection detection. 3D range data was downsampled to one
point per 5cm voxel [14], to ensure equivalent resolution from multiple vantage
points and to provide a significant decrease in computation. For each intersec-
tion, data was collected from each corridor leading into the intersection. Data
was gathered from 46 different intersection/corridor combinations, resulting
in 2070 possible matches. Of these, 108 are correct matches. The results of
each phase of node matching are shown in Table 1.

4.2 Topological Matching

Of the 2070 possible matches, 960 (46%) can be immediately eliminated, be-
cause the degree of one node does not match the degree of the other node.
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Fig. 5. The distributions of each value of the final error vector over nodes of degree
3. The distributions over matches are shown on top, and non-matches on the bottom

Next, matches are eliminated based on the Voronoi radius. To make it as
unlikely as possible that any correct matches are eliminated in this phase,
Tr is set at 1.5 times the maximum difference in Voronoi radii observed in a
correct match. To take into account the differences in various types of inter-
sections, a different threshold T dr is chosen based on the degree d of the node.
Solely based on radii thresholding, 1219 (59%) of the possible matches can
be immediately eliminated. Combining radii thresholding with the enforce-
ment of degree equality eliminates 1374 (66%) of the possible matches. Thus,
approximately 2/3 of prospective matches are eliminated almost immediately.

4.3 2D Matching

After thresholding on topological properties, the next phase is to align the 2D
range data, and compare the MSE against a threshold Te. For 2D TrICP, a
λ value of 2 was used. As with radius thresholding, a different T de is used for
each node degree d, and each T de is set at 1.5 the maximum observed MSE in
a correct match. Of the 2070 possible matches, 1573 (76%) can be eliminated
solely based on 2D MSE thresholding. By also only considering matches that
passed the topological matching phase, 1789 (86%) matches are eliminated.
Thus, the relatively inexpensive topological and 2D matching phases are able
to quickly eliminate all but about 14% of the possible matches.

4.4 3D Matching

Next, the 3D range data associated with the remaining prospective matches
is aligned. For 3D TrICP, a λ value of 1.5 was used. After 3D alignment is
completed, the final error vector E is formed. An error vector consisting of
the following fields has so far produced the best results:

• The difference in Voronoi Radius
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Fig. 6. Output of the final classifier on matches (left) and non-matches (right)

• The 2D MSE of the ξ2K2 points with the smallest error
• The 3D MSE of the ξ3K3 points with the smallest error
• The median angle between normal vectors of the ξ3K3 points with the

smallest error

Example distributions of these 4 elements over both correct and incorrect
matches are shown in Figure 5.

4.5 Final Classification

After the error vector has been computed, it is fed into the classifier to com-
pute a final match probability. For this experiment, the classifier was trained
over the set of all matches that were not eliminated by thresholding tests.
To help reduce the chance of a false negative, correct matches were weighted
twice as heavily as incorrect matches during training. As with all other phases,
a separate classifier is used for each possible node degree.

The distributions of the final probabilities over both correct and incorrect
matches are shown in Figure 6. Thresholding the final probability at 0.1 re-
sults in all 108 correct matches still being considered, with only 23 remaining
false positives. This accuracy is more than sufficient for use within a multi-
hypotheses topological framework.

5 Conclusion

In this paper, we have presented a method for approximating the probabil-
ity that two corridor intersections in a subterranean void match. Such an
approach can be used by an autonomous mine mapping robot to determine
when it is revisiting an intersection. This approach, in conjunction with other
topological techniques, will allow for the full autonomous exploration of mine
environments, including autonomous loop closure.

Future work will focus on making our node matching technique robust to
the point that multi-hypotheses tracking will almost never be necessary. One
method for achieving this would be to use multiple 3D scans from each visit
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to a node to provide the same 360◦ coverage that the 2D scans achieve. Also,
more intelligent means of computing Tr and Te will be explored. Further, the
possibility of more descriptive 3D error metrics will be investigated.
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